INTRODUCTION
En 2014, les bases de la définition du syndrome génito-urinaire de la ménopause ont été posées [18].
En substance, toute perturbation du métabolisme des hormones sexuelles peut induire une série de symptômes regroupés sous le nom de SGUM (Tableau I).
Ce syndrome peut donc survenir bien évidemment à la ménopause [15] mais aussi chez des patientes plus jeunes, particulièrement chez les femmes ayant survécu à un cancer du sein.
En effet, certains traitements qui leur sont proposés aboutissent à une déficience oestrogénique induisant une aménorrhée permanente ou non [3, 20]. Les patientes subissant des protocoles de chimiothérapie ou de radiothérapie peuvent aussi bien sûr être concernées.
Le SGUM affecte donc grandement la qualité de vie des patientes, et pas seulement physiquement.
En effet, la santé sexuelle et intime des femmes ainsi que leur estime d’elles-mêmes sont aussi largement impactées, induisant des conséquences délétères sur leur sommeil et la qualité de leur vie quotidienne [14]. Il s’agit donc d’un problème très important à l’échelle de la population.
L’atrophie vulvo-vaginale (VVA) est une des composantes principales du SGUM [22]. La structure même des tissus du tractus uro-génital est en effet directement sous dépendance des hormones sexuelles et en particulier des oestrogènes.
La symptomatologie liée à la VVA est aussi bien caractérisée et comprend notamment les sensations de sécheresse vaginale, de brûlure, d’irritation évoquées à l’échelle du SGUM [16].
Dès lors, il est intéressant de faire un point particulier sur cette VVVA car elle sous-entend une altération de la synthèse et de la diffusion du mucus servant à lubrification des parois vaginales et de l’introïtus.
C’est un phénomène très particulier faisant appel au processus de transsudation que nous allons détailler plus bas et qui dépend en grande partie de la capacité des tissus sous-muqueux à transporter l’eau jusqu’à la surface.
SYNTHÈSE ET RÉGULATION DU FLUIDE HYDRATANT VAGINAL
ENDOGÈNEL’importance du support hormonal sur le bon fonctionnement des tissus du tractus génital féminin est illustrée par la Figure 1.
Therefore, any change (physiological or pathological) in the hormonal support described in this figure will lead to varying degrees of alterations in neurotransmitter function, tissue structure and composition, and smooth muscle contractility.
The vaginal blood flow will therefore tend to decrease.
Or, l’efficacité de la lubrification dépend étroitement du débit vasculaire.
Le fluide vaginal est donc produit par la paroi vaginale et n’est pas à proprement parlé une sécrétion. Il s’agit d’un transsudat.
Indeed, under the influence of arterial pressure, an ultrafiltrate is likely to form directly from the capillary network which is particularly dense at the level of the lamina propria.
Ces petits vaisseaux sont fenestrés, permettant donc un certain niveau de « fuite » et donc la formation d’un transsudat (Figure 2, sous-types C and D).
Le fluide ainsi formé « percole » ensuite littéralement jusqu’aux couches épithéliales superficielles et arrive ensuite à la surface. Il est intéressant de noter que la membrane de l’épithélium vaginal limite la réabsorption du Na+ présent dans le transsudat.
Cette caractéristique crée donc une force osmotique supplémentaire, permettant d’encore augmenter l’appel d’eau vers la surface épithéliale [9].
Les ions K+, Ca2+ et Cl- y sont aussi particulièrement concentrés. Le transsudat vaginal contient en outre un grand nombre de sialoprotéines, de l’albumine, et des petites molécules comme des acides aminés du lactate et de l’urée [7, 8]. La quantité produite est suffisante pour humidifier la paroi vaginale et permettre le confort de la vie quotidienne.
Le support hormonal de l’homéostasie tissulaire vaginale (Figure 1) est tout particulièrement important pour le mécanisme de transsudation évoqué dans le paragraphe précédent.
En particulier, la liaison des stéroïdes sexuels sur leurs récepteurs respectifs induit une cascade signalétique complexe aboutissant à la lubrification de l’épithélium (Figure 3) :
Note that the transduction pathways described can be non-genomic, i.e. they can be activated via membrane receptors.
This concept is relatively new for steroid hormones since the authors have long thought that their actions could only be envisaged through their binding to a cytoplasmic receptor which necessarily induces protein synthesis.
Or, ce système est par définition incompatible avec une réaction rapide à un stimulus puisque les étapes de transcription, traduction, maturation et excrétion des protéines prennent du temps.
Pourtant, des effets rapides des hormones stéroïdes ont été de plus en plus fréquemment mis en évidence depuis le début des années 2000 et ces fonctions doivent maintenant être prises en compte dans le spectre des actions hormonales attendues [2, 4, 21].
Il est donc logique chez l’animal ovariectomisé de constater une baisse importante de la production de transsudat. Le phénomène est pleinement réversible si une supplémentation oestrogénique intervient ensuite [13].
Le transport des fluides aqueux à travers la paroi muqueuse n’est pas si évident. En effet, le transsudat doit trouver son chemin à travers un épithélium pluristratifié non kératinisé relativement épais. Ce tissu est bien entendu constitué de couches successives de cellules reliées entre elles par des plaques d’adhésion focales de type desmosomes. Il s’agit donc d’un environnement globalement hydrophobe et peu propice à des mouvements de fluide aqueux baso-apicaux. Dans ce contexte, le transsudat va utiliser des structures dédiées pour pouvoir traverser cette barrière cellulaire.
Les aquaporines (AQP) sont une famille de protéines transmembranaires comportant 4 membres identifiés chez les mammifères (AQP1 à AQP4) [5].
Des centaines d’autres isoformes ont été aussi identifiées chez d’autres organismes, incluant des végétaux [12]. Elles partagent toutes un certain nombre de caractéristiques.
Par exemple, elles pèsent en moyenne 30 KDa, elles comportent 6 segments transmembranaires et elles forment un tétramère au sein de la bicouche lipidique de la membrane et elles sont souvent associées à des canaux ioniques (Figure 4).
In a tissue such as the epithelium of the vaginal mucosa, PQAs are strictly necessary for the transport of transudate from the capillaries of the lamina propria to the surface.
De nombreux travaux chez l’animal ont permis de mettre en évidence ce rôle crucial. Par exemple, en 1999, Ma et al. [11] ont démontré que la délétion du gène codant pour AQP5 chez la souris supprimait la sécrétion de fluide par les glandes salivaires. La même démonstration a pu être faite pour la muqueuse de la trachée.
Dans ce cas particulier, le fluide récupéré (dont la quantité avait nettement diminué) présentait aussi une hyperosmolarité [23].
Lorsque le knock-out concernait le gène codant pour AQP1, la synthèse du liquide cérébrospinal au niveau du plexus choroïde ainsi que la production l’humeur aqueuse par l’épithélium ciliaire de l’oeil étaient diminuées.
Ainsi, les auteurs ont conclu à la forte implication d’AQP dans la régulation des pression intracrâniennes et intraoculaires (Zhang et al, 2002). Tout comme dans les travaux précédents, l’osmolarité des fluides obtenus étaient aussi fortement perturbée.
Au niveau vaginal, AQP3, AQP5 et AQP6 ont pu être identifiées chez le rat [17]. De plus, la quantité d’AQP présentes dans les tissus est sensible au support hormonal oestrogénique (Figure 5), confirmant une partie des hypothèses posées dans le modèle présenté dans les Figures 2 and 3.
Park K. et al. [17] ont aussi suggéré qu’une stimulation nerveuse au niveau pelvienne pouvait aussi induire la translocation d’AQP1 et AQP2 du cytosol cellulaire vers les membranes.
Ainsi, le rôle des AQP dans la lubrification vaginale pourrait aussi revêtir une grande importance durant la phase d’excitation sexuelle en permettant une augmentation drastique de la quantité de transsudat disponible à la surface de l’épithélium vaginal.
La lubrification vaginale est un phénomène complexe dont l’efficacité peut varier en fonction d’un grand nombre de paramètres régulateurs :
L’origine vasculaire de l’ultrafiltrat induit une dépendance à la densité du réseau capillaire sous-épithélial mais aussi à sa vasodilatation et à la pression sanguine régnant dans ces vaisseaux.
Une fois formé, le transsudat doit ensuite traverser l’épithélium vaginal via des AQP dans le fonctionnement est soumis à un contrôle hormonal complexe.
In addition to transcellular fluid transport, the HA content of the extracellular matrix is also a facilitating parameter for lubrication. Here again, the hormonal environment will direct the profile of actions that HA can perform in this context.
Finally, the factors influencing vaginal lubrication presented in this summary are by no means exhaustive. There are of course other regulatory loops.
À titre d’exemple et pour ouvrir la réflexion, notons simplement qu’en 2015 un article publié dans « Nature » démontrait la capacité de l’AH de la matrice extracellulaire à agir sur un transporteur cationique nommé TRPV1.
Or, TRPV1 avait précédemment été étudié dans le contexte de la transmission de la douleur au niveau des terminaisons nerveuses nociceptives [1].
We could therefore consider an additional and much more direct means of action of HA on pain related to the absence of transudate on the surface of the vaginal epithelium.
Outre ses propriétés hydratantes, l’AH serait aussi capable d’agir directement sur le signal nerveux. Cette hypothèse est non confirmée à ce jour mais elle illustre la nécessité d’affiner nos connaissances sur ce type d’interaction moléculaire.